DSP Builder Introduction

Handbook
Contents

About DSP Design
- FPGA Architecture Features... 1-1
- DSP Design Flow in FPGAs... 1-2
- Software and Hardware Design Flows in FPGAs... 1-3

About DSP Builder
- About DSP Builder.. 2-1
- About the Advanced and Standard Blocksets.. 2-2
- Tool Integration.. 2-2

Installing DSP Builder
- System Requirements... 3-1
- Installing DSP Builder.. 3-1
- Licensing DSP Builder... 3-3

Document Revision History
.. 4-1
FPGA Architecture Features

You can configure FPGAs to operate in different modes corresponding to a required functionality. You can use a suitable hardware description language (HDL) such as VHDL or Verilog HDL to implement any hardware design. Thus, the same FPGA can implement a DSL router, a DSL modem, a JPEG encoder, a digital broadcast system, or a backplane switch fabric interface.

High-density FPGAs incorporate embedded silicon features that can implement complete systems inside an FPGA, creating a system on a programmable chip (SOPC) implementation. Embedded silicon features such as embedded memory, DSP blocks, and embedded processors are ideally suited for implementing DSP functions such as finite impulse response (FIR) filters, fast Fourier transforms (FFTs), correlators, equalizers, encoders, and decoders.

The embedded DSP blocks also provide other functionality such as addition, subtraction, and multiplication, which are common arithmetic operations in DSP functions. Altera FPGAs offer much more multiplier bandwidth than DSP processors, which only offer a limited number of multipliers.

One determining factor of the overall DSP bandwidth is the multiplier bandwidth, therefore the overall DSP bandwidth of FPGAs can be much higher using FPGAs than with DSP processors.

Many DSP applications use external memory devices to manage large amounts of data processing. The embedded memory in FPGAs meets these requirements and also eliminates the need for external memory devices in some cases.

Embedded processors in FPGAs provide overall system integration and flexibility while partitioning the system between hardware and software. You can implement the system’s software components in the embedded processors and implement the hardware components in the FPGA’s general logic resources. Altera devices provide a choice between embedded soft core processors and embedded hard core processors.

You can implement soft core processors such as the Nios® II embedded processor in FPGAs and add multiple system peripherals. The Nios II processor supports a user-determinable multi-master bus architecture that optimizes the bus bandwidth and removes potential bottlenecks found in DSP processors. You can use multimaster buses to define as many buses and as much performance as needed for a particular application. Off-the-shelf DSP processors make compromises between size and performance when they choose the number of data buses on the chip, potentially limiting performance.
Soft embedded processors in FPGAs provide access to custom instructions such as the MUL instruction in Nios II processors that can perform a multiplication operation in two clock cycles using hardware multipliers. FPGA devices provide a flexible platform to accelerate performance-critical functions in hardware because of the configurability of the device’s logic resources. DSP processors have predefined hardware accelerator blocks, but FPGAs can implement hardware accelerators for each application, allowing the best achievable performance from hardware acceleration. You can implement hardware accelerator blocks with parameterizable IP functions or from scratch using HDL.

Altera offers many IP cores for DSP design. You can parameterize Altera DSP IP cores for the most efficient hardware implementation and to provide maximum flexibility. You can easily port the IP to new FPGA families, leading to higher performance and lower cost. The flexibility of programmable logic and soft IP cores allows you to quickly adapt your designs to new standards without waiting for long lead times usually associated with DSP processors.

DSP Design Flow in FPGAs

Traditionally, system engineers use a hardware flow based on a HDL language, such as Verilog HDL or VHDL, to implement DSP systems in FPGAs. Altera tools such as DSP Builder, enable you to follow a software-based design flow while targeting FPGAs. DSP Builder simplifies hardware implementation of DSP functions, provides a system-level verification tool to the system engineer who is not necessarily familiar with HDL design flow, and allows the system engineer to implement DSP functions in FPGAs without learning HDL. DSP Builder provides an interface from Simulink directly to the FPGA hardware. Additionally, you can incorporate the designs created by DSP Builder into a Qsys system for a complete DSP system implementation.

Figure 1-1: DSP Builder General Design Flow for Altera FPGAs
Altera FPGAs with embedded processors support a software-based design flow. Altera provides the Nios II EDS development tools for compiling, debugging, assembling, and linking software designs. You can then use either on-chip RAM or an external memory device to download these software designs to an FPGA.

Embedded processors and hardware acceleration offer the flexibility, performance, and cost effectiveness in a development flow that is familiar to software developers. You can combine a software design flow with hardware acceleration. In this flow, you first profile C code and identify the functions that are the most performance critical. Then, you can use Altera’s DSP IP or develop your own custom instructions to accelerate those tasks in the FPGA. You can run the system control code with the other low-performance DSP algorithms on a Nios II embedded processor. Altera also provides system integration tools such as Qsys for system-level partitioning and interconnection. You can use Qsys to build entire hardware systems by combining the embedded processor, such as a Nios II embedded processor, with other system peripherals and IP cores.

You can use an HDL-based hardware design flow to develop a pure hardware implementation of a DSP system. Altera provides a complete set of FPGA development tools including the Quartus® Prime software and interfaces to other EDA tools such as Synopsys, Synplify, and Precision Synthesis. These tools enable hardware design, simulation, debug, and in-system verification of the DSP system. You can also follow the DSP Builder design flow and implement hardware-only DSP systems in FPGAs without learning HDL.
About DSP Builder

DSP Builder shortens DSP design cycles by helping you create the hardware representation of a DSP design in an algorithm-friendly development environment. DSP Builder integrates the algorithm development, simulation, and verification capabilities of MathWorks MATLAB and Simulink system-level design tools with the Altera Quartus Prime software and third-party synthesis and simulation tools. You can combine Simulink blocks with DSP Builder blocks to verify system level specifications and perform simulation.

Figure 2-1: DSP Builder System-Level Design Flow
About the Advanced and Standard Blocksets

The DSP Builder installer installs two separate blocksets (advanced and standard), which you can use separately or together from the Simulink library browser.

Note: The DSP Builder standard blockset is a legacy product and Altera recommends you do not use it for new designs, except as a wrapper for advanced blockset designs.

Related Information
- Volume 3: DSP Builder Advanced Blockset in the DSP Builder Handbook

Tool Integration

DSP Builder works with Simulink, the ModelSim simulator, and the Quartus Prime software (including Qsys).

Simulink

DSP Builder is interoperable with other Simulink blocksets. In particular, you can use the basic Simulink blockset to create interactive testbenches. The testbench block allows you to generate a VHDL model, so that you can compare Simulink simulation results with the ModelSim simulator. For information about Simulink fixed point types, the signal processing blockset and the communications blockset, refer to the MATLAB Help.

ModelSim Simulator

You can run the ModelSim simulator from within DSP Builder, if the ModelSim executable is in your path. You can use a script to integrate between the DSP Builder advanced blockset and the ModelSim simulator. The script runs the automatic testbench flow for a block. It reads some stimulus files at run time to verify a hardware block. The automatic testbench flow runs a rigorous test and returns a result whether or not the outputs match.

Quartus Prime Software

The advanced blockset allows you to build high-speed, high-performance DSP datapaths. In most production designs there is an RTL layer surrounding this datapath to perform interfacing to processors, high speed I/O, memories, and so on. To complete the design, use Qsys or RTL to assign board level components. The Quartus Prime software can then complete the synthesis and place-and-route process. You can automatically load a design into the Quartus Prime software by clicking on the Run Quartus Prime block in the top-level model.

Qsys

DSP Builder creates a conduit interface and `hw.tcl` file for each advanced blockset design. It creates a memory-mapped interface only if the design contains ModelBus blocks or external memory blocks. It can also create an Avalon® Streaming interface. The `hw.tcl` file can expose the processor bus for connection in Qsys. A DSP Builder advanced blockset subsystem is available from the System Contents tab in Qsys after you add the path to the `hw.tcl` file to the Qsys IP search path.
System Requirements

DSP Builder integrates with the The MathWorks MATLAB and Simulink tools and with the Altera Quartus® Prime software.

Ensure at least one version of The MathWorks MATLAB and Simulink tool is available on your workstation before you install DSP Builder. You should use the same version of the Quartus Prime software and DSP Builder. DSP Builder only supports 64-bit versions of MATLAB.

Table 3-1: DSP Builder Tool Dependencies

<table>
<thead>
<tr>
<th>Tool</th>
<th>Version</th>
<th>Version</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSP Builder</td>
<td>15.1</td>
<td>15.0</td>
<td>14.1</td>
</tr>
<tr>
<td>The MathWorks (MATLAB and Simulink)</td>
<td>R2013a</td>
<td>R2013a</td>
<td>R2012b</td>
</tr>
<tr>
<td></td>
<td>R2013b</td>
<td>R2013b</td>
<td>R2013a</td>
</tr>
<tr>
<td></td>
<td>R2014a</td>
<td>R2014a</td>
<td>R2013b</td>
</tr>
<tr>
<td></td>
<td>R2014b</td>
<td>R2014b</td>
<td>R2014a</td>
</tr>
<tr>
<td></td>
<td>R2015a</td>
<td>R2015a</td>
<td>R2014b</td>
</tr>
</tbody>
</table>

Note: The DSP Builder advanced blockset uses Simulink fixed-point types for all operations and requires licensed versions of Simulink Fixed Point. Altera also recommends DSP System Toolbox and the Communications System Toolbox, which some design examples use.

Related Information

Altera Software Installation and Licensing.

Installing DSP Builder

1. Install DSP Builder from the Altera Complete Design Suite.
In the Altera software installer, ensure you turn on DSP Builder in the Select components window.

Figure 3-1: Select Components—DSP Builder

The default installation directory is `c:\altera\<version>\quartus` on Windows or `/opt/altera<version>/quartus` on Linux.
After installing DSP Builder, the Altera DSP Builder standard blockset and the Altera DSP Builder advanced blockset libraries are available in the Simulink library browser in the MATLAB software.

Licensing DSP Builder

Before you can use DSP Builder, you must request a license file from the Altera website at and install it on your computer. The Quartus Prime software recommends you specify a path to an `LM_LICENSE_FILE` variable, but it also allows you to use an explicit path to a license file. However, DSP Builder allows you to specify a path to only an `LM_LICENSE_FILE` variable.

Related Information

[Altera Software Installation and Licensing](#)
DSP Builder introduction handbook revision history.

Table 4-1: Document Revision History

<table>
<thead>
<tr>
<th>Date</th>
<th>Software Version</th>
<th>Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015.11.11</td>
<td>15.1</td>
<td>Updated MATLAB version support for DSP Builder v15.1.</td>
</tr>
<tr>
<td>2015.05.01</td>
<td>15.0</td>
<td>Updated MATLAB version support for DSP Builder v15.0.</td>
</tr>
<tr>
<td>June 2014</td>
<td>14.0</td>
<td>Updated MATLAB version support for DSP Builder v14.0.</td>
</tr>
<tr>
<td>May 2013</td>
<td>13.0</td>
<td>Updated MATLAB version support for DSP Builder v13.0.</td>
</tr>
<tr>
<td>November 2012</td>
<td>12.1</td>
<td>Updated MATLAB version support.</td>
</tr>
<tr>
<td>June 2012</td>
<td>12.0</td>
<td>• Updated MATLAB version support</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Deleted</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Upgrading from v7.1 chapter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated installation instructions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated instructions for starting DSP Builder</td>
</tr>
<tr>
<td>November 2011</td>
<td>11.1</td>
<td>Updated MATLAB version support.</td>
</tr>
<tr>
<td>April 2011</td>
<td>11.0</td>
<td>• Updated MATLAB version support</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Added support for 64-bit MATLAB</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Updated installation instructions</td>
</tr>
</tbody>
</table>